Search 
 
 
PERIODICAL FASTING AND CALORIC RESTRICTION FOR LIFE EXTENSION, DISEASE TREATMENT AND CREATIVITY.
(clinical and experimental data)
 
 3.2 FASTING AND CALORIC RESTRICTION PREVENT AND CURE DISEASES (Evidence) 
   
 
  SLEEPING DISORDERS  
   
 
Effects of hypocaloric diet on sleep in young and old rats.
The effect of a very low-calorie diet-induced weight loss on the severity of obstructive sleep apnoea and autonomic nervous function in obese patients with obstructive sleep apnoea syndrome.
 
Obstructive Sleep Apnea
Overview

Sleep apnea is a disorder that commonly afflicts more than 12 million people in the United States. It takes its name from the Greek word apnea, which means "without breath." People with sleep apnea literally stop breathing repeatedly during their sleep, often for a minute or longer and as many as hundreds of times during a single night. Sleep apnea can be caused by either complete obstruction of the airway (obstructive apnea) or partial obstruction (obstructive hypopnea-- hypopnea is slow, shallow breathing), both of which can wake one up. There are three types of sleep apnea obstructive, central, and mixed. Of these, obstructive sleep apnea (OSA) is the most common. OSA occurs in approximately 2 percent of women and 4 percent of men over the age of 35.
 
   
   

2002

Neurobiol Aging. 2002 Sep-Oct;23(5):771-6.
Effects of hypocaloric diet on sleep in young and old rats.
Salin-Pascual RJ, Upadhyay U, Shiromani PJ.
West Roxbury VA Medical Center and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA 02132, USA.

Aging produces a loss in a number of behavioral and cognitive functions, including sleep. Hypocaloric diet is one of the few methods that have been shown to retard the effects due to age. However, the effects of such a diet on sleep have never been investigated. In the present study, 21 months old male F344 rats fed a 60% calorie-reduced diet continued to have a significant reduction in delta power (0.3-4 Hz EEG), less sleep following 12 h total sleep deprivation (TSD) and increased sensitivity to caffeine compared to young rats (3 months) fed a similar diet. These results indicate that caloric restriction is unable to prevent the decline in sleep that occurs with aging. Copyright 2002 Elsevier Science Inc.

   
   

1998

Clin Physiol. 1998 Jul;18(4):377-85
The effect of a very low-calorie diet-induced weight loss on the severity of obstructive sleep apnoea and autonomic nervous function in obese patients with obstructive sleep apnoea syndrome.
Kansanen M, Vanninen E, Tuunainen A, Pesonen P, Tuononen V, Hartikainen J, Mussalo H, Uusitupa M.
Department of Otolaryngology, Kuopio University Hospital, Finland.

The aim of this study was to examine the effect of a very low-calorie diet (VLCD)-induced weight loss on the severity of obstructive sleep apnoea (OSA), blood pressure and cardiac autonomic regulation in obese patients with obstructive sleep apnoea syndrome (OSAS). A total of 15 overweight patients (14 men and one woman, body weight 114 +/- 20 kg, age 52 +/- 9 years, range 39-67 years) with OSAS were studied prospectively. They were advised to follow a 2.51-3.35 MJ (600-800 kcal) diet daily for a 3-month period. In the beginning of the study, the patients underwent nocturnal sleep studies, autonomic function tests and 24-h electrocardiograph (ECG) recording. In addition, 15 age-matched, normal-weight subjects were studied. They underwent the Valsalva test, the deep-breathing test and assessment of heart rate variability at rest. The sleep studies and autonomic function tests were repeated after the weight loss period. There was a significant reduction in weight (114 +/- 20 kg to 105 +/- 21 kg, P < 0.001), the weight loss being 9.2 +/- 4.0 kg (range 2.3-19.5 kg). This was associated with a significant improvement in the oxygen desaturation index (ODI4) during sleep (31 +/- 20-19 +/- 18, P < 0.001). Before the weight loss the OSAS patients had significantly higher blood pressure (150 +/- 18 vs. 134 +/- 20, P < 0.05, for systolic blood pressure, 98 +/- 10 vs. 85 +/- 13, P < 0.05, for diastolic blood pressure) and heart rate (67 +/- 10 beats min-1 vs. 60 +/- 13, P < 0.05) at rest than the control group. They had also lower baroreflex sensitivity (4.7 +/- 2.8 ms mmHg-1 vs. 10.8 +/- 7.1 ms mmHg-1, P < 0.01). During the weight reduction, the blood pressure declined significantly, and the baroreflex sensitivity increased by 49%. In conclusion, our experience shows that weight loss with VLCD is an effective treatment for OSAS. Weight loss improved significantly sleep apnoea and had favourable effects on blood pressure and baroreflex sensitivity that may have prognostic implications.

home
top
   
FASTING / LOW CALORIE PROGRAMS
on the Adriatic Coast
The Anti-Aging Fasting Program consists of a 7-28 days program (including 3 - 14 fasting days). 7-28-day low-calorie diet program is also available .
More information
    The anti-aging story (summary)
Introduction. Statistical review. Your personal aging curve
  Aging and Anti-aging. Why do we age?
    2.1  Aging forces (forces that cause aging
     
Internal (free radicals, glycosylation, chelation etc.) 
External (Unhealthy diet, lifestyle, wrong habits, environmental pollution, stress, poverty-change "poverty zones", or take it easy. etc.) 
    2.2 Anti-aging forces
     
Internal (apoptosis, boosting your immune system, DNA repair, longevity genes) 
External (wellness, changing your environment; achieving comfortable social atmosphere in your life, regular intake of anti-aging drugs, use of replacement organs, high-tech medicine, exercise)
    2.3 Aging versus anti-aging: how to tip the balance in your favour!
 
    3.1 Caloric restriction and fasting extend lifespan and decrease all-cause mortality (Evidence)
      Human studies
Monkey studies
Mouse and rat studies
Other animal studies
    3.2 Fasting and caloric restriction prevent and cure diseases (Evidence)
        Obesity
Diabetes
Hypertension and Stroke
Skin disorders
Mental disorders
Neurogical disorders
Asthmatic bronchitis, Bronchial asthma
Bones (osteoporosis) and fasting
Arteriosclerosis and Heart Disease
Cancer and caloric restriction
Cancer and fasting - a matter of controversy
Eye diseases
Chronic fatigue syndrome
Sleeping disorders
Allergies
Rheumatoid arthritis
Gastrointestinal diseases
Infertility
Presbyacusis
    3.3 Fasting and caloric restriction produce various
      biological effects. Effects on:
        Energy metabolism
Lipids metabolism
Protein metabolism and protein quality
Neuroendocrine and hormonal system
Immune system
Physiological functions
Reproductive function
Radio-sensitivity
Apoptosis
Cognitive and behavioral functions
Biomarkers of aging
    3.4 Mechanisms: how does calorie restriction retard aging and boost health?
        Diminishing of aging forces
  Lowering of the rate of gene damage
  Reduction of free-radical production
  Reduction of metabolic rate (i.e. rate of aging)
  Lowering of body temperature
  Lowering of protein glycation
Increase of anti-aging forces
  Enhancement of gene reparation
  Enhancement of free radical neutralisation
  Enhancement of protein turnover (protein regeneration)
  Enhancement of immune response
  Activation of mono-oxygenase systems
  Enhance elimination of damaged cells
  Optimisation of neuroendocrine functions
    3.5 Practical implementation: your anti-aging dieting
        Fasting period.
Re-feeding period.
Safety of fasting and low-calorie dieting. Precautions.
      3.6 What can help you make the transition to the low-calorie life style?
        Social, psychological and religious support - crucial factors for a successful transition.
Drugs to ease the transition to caloric restriction and to overcome food cravings (use of adaptogenic herbs)
Food composition
Finding the right physician
    3.7Fasting centers and fasting programs.
  Food to eat. Dishes and menus.
    What to eat on non-fasting days. Dishes and menus. Healthy nutrition. Relation between foodstuffs and diseases. Functional foods. Glycemic index. Diet plan: practical summary. "Dr. Atkins", "Hollywood" and other fad diets versus medical science
     

Vegetables
Fruits
Bread, cereals, pasta, fiber
Glycemic index
Fish
Meat and poultry
Sugar and sweet
Legumes
Fats and oils
Dairy and eggs
Mushrooms
Nuts and seeds
Alcohol
Coffee
Water
Food composition

  Anti-aging drugs and supplements
    5.1 Drugs that are highly recommended
      (for inclusion in your supplementation anti-aging program)
        Vitamin E
Vitamin C
Co-enzyme Q10
Lipoic acid
Folic acid
Selenium
Flavonoids, carotenes
DHEA
Vitamin B
Carnitin
SAM
Vinpocetine (Cavinton)
Deprenyl (Eldepryl)
    5.2 Drugs with controversial or unproven anti-aging effect, or awaiting other evaluation (side-effects)
        Phyto-medicines, Herbs
HGH
Gerovital
Melatonin
      5.3 Drugs for treatment and prevention of specific diseases of aging. High-tech modern pharmacology.
        Alzheimer's disease and Dementia
Arthritis
Cancer
Depression
Diabetes
Hyperlipidemia
Hypertension
Immune decline
Infections, bacterial
Infections, fungal
Memory loss
Menopause
Muscle weakness
Osteoporosis
Parkinson's disease
Prostate hyperplasia
Sexual disorders
Stroke risk
Weight gaining
    5.4 The place of anti-aging drugs in the whole
      program - a realistic evaluation
 
    6.1 Early diagnosis of disease - key factor to successful treatment.
      Alzheimer's disease and Dementia
Arthritis
Cancer
Depression
Diabetes
Cataracts and Glaucoma
Genetic disorders
Heart attacks
Hyperlipidemia
Hypertension
Immune decline
Infectious diseases
Memory loss
Muscle weakness
Osteoporosis
Parkinson's disease
Prostate hyperplasia
Stroke risk
Weight gaining
    6.2 Biomarkers of aging and specific diseases
    6.3 Stem cell therapy and therapeutic cloning
    6.4 Gene manipulation
    6.5 Prosthetic body-parts, artificial organs
        Blood
Bones, limbs, joints etc.
Brain
Heart & heart devices
Kidney
Liver
Lung
Pancreas
Spleen
    6.6 Obesity reduction by ultrasonic treatment
  Physical activity and aging. Experimental and clinical data.
        Aerobic exercises
Stretching
Weight-lifting - body-building
Professional sport: negative aspects
 
  Conclusion: the whole anti-aging program
    9.1 Modifying your personal aging curve
      Average life span increment. Expert evaluation.
     
Periodic fasting and caloric restriction can add 40 - 50 years to your lifespan
Regular intake of anti-aging drugs can add 20-30 years to your lifespan
Good nutrition (well balanced, healthy food, individually tailord diet) can add 15-25 years to your lifespan
High-tech bio-medicine service can add 15-25 years to your lifespan
Quality of life (prosperity, relaxation, regular vocations) can add 15-25 years to your lifespan
Regular exercise and moderate physical activity can add 10-20 years to your lifespan
These approaches taken together can add 60-80 years to your lifespan, if you start young (say at age 20). But even if you only start later (say at 45-50), you can still gain 30-40 years


Click image
to view
    9.2 The whole anti-aging life style - brief summary 
    References eXTReMe Tracker
        The whole anti-aging program: overview
         
       

       
     
Home Contact Us ANTI-AGING GUIDE 2003