(clinical and experimental data)
Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain.
Free radicals and aging.
Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria.
J Bioenerg Biomembr. 2005 Apr;37(2):83-90.
Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain.
Sanz A, Caro P, Ibanez J, Gomez J, Gredilla R, Barja G.
Department of Animal Physiology-II, Faculty of Biological Sciences, Complutense University, Madrid, 28040, Spain.

Previous studies in mammalian models indicate that the rate of mitochondrial reactive oxygen species ROS production and the ensuing modification of mitochondrial DNA (mtDNA) link oxidative stress to aging rate. However, there is scarce information concerning this in relation to caloric restriction (CR) in the brain, an organ of maximum relevance for ageing. Furthermore, it has never been studied if CR started late in life can improve those oxidative stress-related parameters. In this investigation, rats were subjected during 1 year to 40% CR starting at 24 months of age. This protocol of CR significantly decreased the rate of mitochondrial H(2)O(2) production (by 24%) and oxidative damage to mtDNA (by 23%) in the brain below the level of both old and young ad libitum-fed animals. In agreement with the progressive character of aging, the rate of H(2)O(2) production of brain mitochondria stayed constant with age. Oxidative damage to nuclear DNA increased with age and this increase was fully reversed by CR to the level of the young controls. The decrease in ROS production induced by CR was localized at Complex I and occurred without changes in oxygen consumption. Instead, the efficiency of brain mitochondria to avoid electron leak to oxygen at Complex I was increased by CR. The mechanism involved in that increase in efficiency was related to the degree of electronic reduction of the Complex I generator. The results agree with the idea that CR decreases aging rate in part by lowering the rate of free radical generation of mitochondria in the brain.

Trends Neurosci. 2004 Oct;27(10):595-600.
Free radicals and aging.
Barja G.
Department of Animal Physiology-II, Faculty of Biology, Complutense University, Madrid 28040, Spain.

Aging is characterized by decrements in maximum function and accumulation of mitochondrial DNA mutations, which are best observed in organs such as the brain that contain post-mitotic cells. Oxygen radicals are increasingly considered responsible for part of these aging changes. Comparative studies of animals with different aging rates have shown that the rate of mitochondrial oxygen radical generation is directly related to the steady-state level of oxidative damage to mitochondrial DNA and is inversely correlated with maximum longevity in higher vertebrates. The degree of unsaturation of tissue fatty acids also correlates inversely with maximum longevity. These are the two known traits connecting oxidative stress with aging. Furthermore, caloric restriction, which decreases the rate of aging, proportionately decreases mitochondrial oxygen radical generation, especially at complex I. These findings are reviewed, highlighting the results obtained in the brain.

Free Radic Biol Med 2002 May 1;32(9):882-9
Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria.
Lopez-Torres M, Gredilla R, Sanz A, Barja G.
Department of Animal Biology II (Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.

The effect of long-term caloric restriction and aging on the rates of mitochondrial H(2)O(2) production and oxygen consumption as well as on oxidative damage to nuclear (nDNA) and mitochondrial DNA (mtDNA) was studied in rat liver tissue. Long-term caloric restriction significantly decreased H(2)O(2) production of rat liver mitochondria (47% reduction) and significantly reduced oxidative damage to mtDNA (46% reduction) with no changes in nDNA. The decrease in ROS production was located at complex I because it only took place with complex I-linked substrates (pyruvate/malate) but not with complex II-linked substrates (succinate). The mechanism responsible for that decrease in ROS production was not a decrease in mitochondrial oxygen consumption because it did not change after long-term restriction. Instead, the caloric restricted mitochondria released less ROS per unit electron flow, due to a decrease in the reduction degree of the complex I generator. On the other hand, increased ROS production with aging in state 3 was observed in succinate-supplemented mitochondria because old control animals were unable to suppress H(2)O(2) production during the energy transition from state 4 to state 3. The levels of 8-oxodG in mtDNA increased with age in old animals and this increase was abolished by caloric restriction. These results support the idea that caloric restriction reduces the aging rate at least in part by decreasing the rate of mitochondrial ROS production and so, the rate of oxidative attack to biological macromolecules like mtDNA.

on the Adriatic Coast
The Anti-Aging Fasting Program consists of a 7-28 days program (including 3 - 14 fasting days). 7-28-day low-calorie diet program is also available .
More information
    The anti-aging story (summary)
Introduction. Statistical review. Your personal aging curve
  Aging and Anti-aging. Why do we age?
    2.1  Aging forces (forces that cause aging
Internal (free radicals, glycosylation, chelation etc.) 
External (Unhealthy diet, lifestyle, wrong habits, environmental pollution, stress, poverty-change "poverty zones", or take it easy. etc.) 
    2.2 Anti-aging forces
Internal (apoptosis, boosting your immune system, DNA repair, longevity genes) 
External (wellness, changing your environment; achieving comfortable social atmosphere in your life, regular intake of anti-aging drugs, use of replacement organs, high-tech medicine, exercise)
    2.3 Aging versus anti-aging: how to tip the balance in your favour!
    3.1 Caloric restriction and fasting extend lifespan and decrease all-cause mortality (Evidence)
      Human studies
Monkey studies
Mouse and rat studies
Other animal studies
    3.2 Fasting and caloric restriction prevent and cure diseases (Evidence)
Hypertension and Stroke
Skin disorders
Mental disorders
Neurogical disorders
Asthmatic bronchitis, Bronchial asthma
Bones (osteoporosis) and fasting
Arteriosclerosis and Heart Disease
Cancer and caloric restriction
Cancer and fasting - a matter of controversy
Eye diseases
Chronic fatigue syndrome
Sleeping disorders
Rheumatoid arthritis
Gastrointestinal diseases
    3.3 Fasting and caloric restriction produce various
      biological effects. Effects on:
        Energy metabolism
Lipids metabolism
Protein metabolism and protein quality
Neuroendocrine and hormonal system
Immune system
Physiological functions
Reproductive function
Cognitive and behavioral functions
Biomarkers of aging
    3.4 Mechanisms: how does calorie restriction retard aging and boost health?
        Diminishing of aging forces
  Lowering of the rate of gene damage
  Reduction of free-radical production
  Reduction of metabolic rate (i.e. rate of aging)
  Lowering of body temperature
  Lowering of protein glycation
Increase of anti-aging forces
  Enhancement of gene reparation
  Enhancement of free radical neutralisation
  Enhancement of protein turnover (protein regeneration)
  Enhancement of immune response
  Activation of mono-oxygenase systems
  Enhance elimination of damaged cells
  Optimisation of neuroendocrine functions
    3.5 Practical implementation: your anti-aging dieting
        Fasting period.
Re-feeding period.
Safety of fasting and low-calorie dieting. Precautions.
      3.6 What can help you make the transition to the low-calorie life style?
        Social, psychological and religious support - crucial factors for a successful transition.
Drugs to ease the transition to caloric restriction and to overcome food cravings (use of adaptogenic herbs)
Food composition
Finding the right physician
    3.7Fasting centers and fasting programs.
  Food to eat. Dishes and menus.
    What to eat on non-fasting days. Dishes and menus. Healthy nutrition. Relation between foodstuffs and diseases. Functional foods. Glycemic index. Diet plan: practical summary. "Dr. Atkins", "Hollywood" and other fad diets versus medical science

Bread, cereals, pasta, fiber
Glycemic index
Meat and poultry
Sugar and sweet
Fats and oils
Dairy and eggs
Nuts and seeds
Food composition

  Anti-aging drugs and supplements
    5.1 Drugs that are highly recommended
      (for inclusion in your supplementation anti-aging program)
        Vitamin E
Vitamin C
Co-enzyme Q10
Lipoic acid
Folic acid
Flavonoids, carotenes
Vitamin B
Vinpocetine (Cavinton)
Deprenyl (Eldepryl)
    5.2 Drugs with controversial or unproven anti-aging effect, or awaiting other evaluation (side-effects)
        Phyto-medicines, Herbs
      5.3 Drugs for treatment and prevention of specific diseases of aging. High-tech modern pharmacology.
        Alzheimer's disease and Dementia
Immune decline
Infections, bacterial
Infections, fungal
Memory loss
Muscle weakness
Parkinson's disease
Prostate hyperplasia
Sexual disorders
Stroke risk
Weight gaining
    5.4 The place of anti-aging drugs in the whole
      program - a realistic evaluation
    6.1 Early diagnosis of disease - key factor to successful treatment.
      Alzheimer's disease and Dementia
Cataracts and Glaucoma
Genetic disorders
Heart attacks
Immune decline
Infectious diseases
Memory loss
Muscle weakness
Parkinson's disease
Prostate hyperplasia
Stroke risk
Weight gaining
    6.2 Biomarkers of aging and specific diseases
    6.3 Stem cell therapy and therapeutic cloning
    6.4 Gene manipulation
    6.5 Prosthetic body-parts, artificial organs
Bones, limbs, joints etc.
Heart & heart devices
    6.6 Obesity reduction by ultrasonic treatment
  Physical activity and aging. Experimental and clinical data.
        Aerobic exercises
Weight-lifting - body-building
Professional sport: negative aspects
  Conclusion: the whole anti-aging program
    9.1 Modifying your personal aging curve
      Average life span increment. Expert evaluation.
Periodic fasting and caloric restriction can add 40 - 50 years to your lifespan
Regular intake of anti-aging drugs can add 20-30 years to your lifespan
Good nutrition (well balanced, healthy food, individually tailord diet) can add 15-25 years to your lifespan
High-tech bio-medicine service can add 15-25 years to your lifespan
Quality of life (prosperity, relaxation, regular vocations) can add 15-25 years to your lifespan
Regular exercise and moderate physical activity can add 10-20 years to your lifespan
These approaches taken together can add 60-80 years to your lifespan, if you start young (say at age 20). But even if you only start later (say at 45-50), you can still gain 30-40 years

Click image
to view
    9.2 The whole anti-aging life style - brief summary 
    References eXTReMe Tracker
        The whole anti-aging program: overview

Home Contact Us ANTI-AGING GUIDE 2003