Search 
 
 
PERIODICAL FASTING AND CALORIC RESTRICTION FOR LIFE EXTENSION, DISEASE TREATMENT AND CREATIVITY.
(clinical and experimental data)
 
 3.4 MECHANISM: HOW DOES CALORIE RESTRICTION RETARD AGING ANDF BOOST HEALTH? 
   
   
  ENHANCEMENT OF GENE REPARATION  
   
 
Calorie restriction--the SIR2 connection.
The Role of Oxidative Stress in relation to Caloric Restriction and Longevity.
Calorie restriction and age-related oxidative stress.
Effects of Age and Dietary Restriction on Lifespan and Oxidative Stress of SAMP8 Mice with Learning and Memory impairments.
Activities of antioxidant enzymes in various tissues of male Fischer 344 rats are altered by food restriction.
 
   
   
Cell. 2005 Feb 25;120(4):473-82.
Calorie restriction--the SIR2 connection.
Guarente L, Picard F.
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

A nutritious diet low in calories improves the health and extends the life span of rodents. Recent studies identified a gene, SIR2, which encodes an NAD-dependent deacetylase and may mediate the effects of calorie restriction. In this review, we discuss SIR2 genes and calorie restriction in the lower organisms yeast and Drosophila. We then describe the physiological changes in mammals during calorie restriction and how they may lead to the observed health benefits. We summarize the roles of mammalian Sirt1 in mediating these changes in tissues and endocrine systems and propose that Sirt1 regulates calorie restriction by sensing low calories and triggering physiological changes linked to health and longevity.

   
   
Endocrinology. 2005 May 26.
The Role of Oxidative Stress in relation to Caloric Restriction and Longevity.
Gredilla R, Barja G.
Department of Animal Physiology-II, Faculty of Biology, Complutense University, Madrid 28040, Spain.

Reduction of the caloric intake without malnutrition is one of the most consistent experimental interventions increasing mean and maximum life span in different species. For over seventy years caloric restriction has been studied, and during the last years the number of investigations on such nutritional intervention and aging has dramatically increased. Since caloric restriction decreases the aging rate, it constitutes an excellent approach to better understand the mechanisms underlying the aging process. Different investigations have reported reductions in steady-state oxidative damage to proteins, lipids and DNA in animals subjected to restricted caloric intake. Most interestingly, several investigations have reported that these decreases in oxidative damage are related to a lowering of mitochondrial free radical generation rate in different tissues of the restricted animals. Thus, similarly to what has been described for long-lived animals in comparative studies, a decrease in mitochondrial free radical generation has been suggested to be one of the main determinants of the extended life span observed in restricted animals. Here we review recent studies on caloric restriction and longevity, focusing on mitochondrial oxidative stress and the proposed mechanisms leading to an extended longevity in caloric restricted animals.

   
   
Ann N Y Acad Sci 2000 Jun;908:180-98.
Calorie restriction and age-related oxidative stress.
Merry BJ.
School of Biological Sciences, University of Liverpool, United Kingdom.

Calorie restriction (CR) in mammals has been recognized as the best characterized and most reproducible strategy for extending maximum survival, retarding physiological aging, and delaying the onset of age-related pathologic conditions in mammals. The overwhelming majority of studies using CR have used short-lived rodent species, although current work using rhesus and squirrel monkeys will determine whether this paradigm is also relevant to manipulating the rate of primate aging. The mechanism by which restricted calorie intake modifies the rate of aging and pathology has been the subject of much controversy, although an attenuation in the lifetime accumulation of oxidative damage appears to be a central feature. Although the majority of studies have focused on the ability of cells from calorie-restricted animals to scavenge free radicals to explain the slower accrual of oxidative damage with age, it is not established that CR has a consistent effect to upregulate the activity of these enzymes in all tissues. A major effect of calorie-restricted feeding now appears to be on the rate of production or leak of free radicals from the mitochondria. The details of the adaptation and the signaling pathway that induces this effect are currently unknown.

   
   
J Nutr Health Aging 2000;4(3):182-186.
Effects of Age and Dietary Restriction on Lifespan and Oxidative Stress of SAMP8 Mice with Learning and Memory impairments.
Choi J, Kim D.
Faculty of Food Science and Biotechnology, Pukyong National University; 599-1 Daeyeon-Dong, Nam-Gu, Pusan 608-737, Korea.

This study was to evaluate the effect of dietary restriction (DR) on lifespan and oxidative stress of dementia mouse model SAMP8 with impaired learning and memory. SAMP8 female mice were fed either ad libitum (AL) or fed 60% of food intake of AL. Results showed that basal metabolic rates (BMR) were significantly lower (15 to 22%) in DR with increased median and maximum lifespans, suggesting feed and gross efficiencies were significantly lower in DR than in AL. Grading score of senescence resulted in a marked improvement about 2-fold by DR compared with AL. The amounts of lipofuscin at 12 months were significantly lowered 16% in DR than that of AL. Median and maximal lifespans significantly increased (28.5% and 16.4%, respectively) by DR, and also lowered superoxide radical about 15~45% in DR compared with AL at 4, 8 and 12 months of age. On the other hand, superoxide dismutase (SOD) activities were higher (about 15~30%) in DR than those in AL group of SAMP8 except for 4 months of age. Our results suggest that 40% calorie restricted SAMP8 can effectively suppress dementia-related abnormalities during aging.

   
   
J Nutr 1995 Feb;125(2):195-201.
Activities of antioxidant enzymes in various tissues of male Fischer 344 rats are altered by food restriction.
Xia E; Rao G; Van Remmen H; Heydari AR; Richardson A.
Geriatric Research, Education and Clinical Center, Audie L. Murphy Memorial Veterans Hospital, San Antonio, TX.

ABSTRACT: The objective of this study was to determine how food restriction (40% restriction of food intake) altered the age-related changes in the activities of Cu,Zn superoxide dismutase, catalase and glutathione peroxidase in liver, brain cortex, heart, kidney and intestinal mucosa obtained from 6-, 16- and 26-mo-old male Fischer 344 rats. Food restriction increased the activity of one or more of the antioxidant enzymes in the liver, brain cortex, heart and kidney of the rats. However, the magnitude of the effect and the antioxidant enzyme(s) affected by food restriction varied from tissue to tissue, and food restriction had no significant effect on the activities of these enzymes in intestinal mucosa. Interestingly, the four tissues in which food restriction increased the activity of one or more of the antioxidant enzymes showed reduced lipid peroxidation as measured by thiobarbituric acid-reactive material. These data suggest that food restriction might enhance the survival of rodents by altering the levels of the antioxidant enzymes and hence reducing free radical damage.

   
home
top
   
FASTING / LOW CALORIE PROGRAMS
on the Adriatic Coast
The Anti-Aging Fasting Program consists of a 7-28 days program (including 3 - 14 fasting days). 7-28-day low-calorie diet program is also available .
More information
    The anti-aging story (summary)
Introduction. Statistical review. Your personal aging curve
  Aging and Anti-aging. Why do we age?
    2.1  Aging forces (forces that cause aging
     
Internal (free radicals, glycosylation, chelation etc.) 
External (Unhealthy diet, lifestyle, wrong habits, environmental pollution, stress, poverty-change "poverty zones", or take it easy. etc.) 
    2.2 Anti-aging forces
     
Internal (apoptosis, boosting your immune system, DNA repair, longevity genes) 
External (wellness, changing your environment; achieving comfortable social atmosphere in your life, regular intake of anti-aging drugs, use of replacement organs, high-tech medicine, exercise)
    2.3 Aging versus anti-aging: how to tip the balance in your favour!
 
    3.1 Caloric restriction and fasting extend lifespan and decrease all-cause mortality (Evidence)
      Human studies
Monkey studies
Mouse and rat studies
Other animal studies
    3.2 Fasting and caloric restriction prevent and cure diseases (Evidence)
        Obesity
Diabetes
Hypertension and Stroke
Skin disorders
Mental disorders
Neurogical disorders
Asthmatic bronchitis, Bronchial asthma
Bones (osteoporosis) and fasting
Arteriosclerosis and Heart Disease
Cancer and caloric restriction
Cancer and fasting - a matter of controversy
Eye diseases
Chronic fatigue syndrome
Sleeping disorders
Allergies
Rheumatoid arthritis
Gastrointestinal diseases
Infertility
Presbyacusis
    3.3 Fasting and caloric restriction produce various
      biological effects. Effects on:
        Energy metabolism
Lipids metabolism
Protein metabolism and protein quality
Neuroendocrine and hormonal system
Immune system
Physiological functions
Reproductive function
Radio-sensitivity
Apoptosis
Cognitive and behavioral functions
Biomarkers of aging
    3.4 Mechanisms: how does calorie restriction retard aging and boost health?
        Diminishing of aging forces
  Lowering of the rate of gene damage
  Reduction of free-radical production
  Reduction of metabolic rate (i.e. rate of aging)
  Lowering of body temperature
  Lowering of protein glycation
Increase of anti-aging forces
  Enhancement of gene reparation
  Enhancement of free radical neutralisation
  Enhancement of protein turnover (protein regeneration)
  Enhancement of immune response
  Activation of mono-oxygenase systems
  Enhance elimination of damaged cells
  Optimisation of neuroendocrine functions
    3.5 Practical implementation: your anti-aging dieting
        Fasting period.
Re-feeding period.
Safety of fasting and low-calorie dieting. Precautions.
      3.6 What can help you make the transition to the low-calorie life style?
        Social, psychological and religious support - crucial factors for a successful transition.
Drugs to ease the transition to caloric restriction and to overcome food cravings (use of adaptogenic herbs)
Food composition
Finding the right physician
    3.7Fasting centers and fasting programs.
  Food to eat. Dishes and menus.
    What to eat on non-fasting days. Dishes and menus. Healthy nutrition. Relation between foodstuffs and diseases. Functional foods. Glycemic index. Diet plan: practical summary. "Dr. Atkins", "Hollywood" and other fad diets versus medical science
     

Vegetables
Fruits
Bread, cereals, pasta, fiber
Glycemic index
Fish
Meat and poultry
Sugar and sweet
Legumes
Fats and oils
Dairy and eggs
Mushrooms
Nuts and seeds
Alcohol
Coffee
Water
Food composition

  Anti-aging drugs and supplements
    5.1 Drugs that are highly recommended
      (for inclusion in your supplementation anti-aging program)
        Vitamin E
Vitamin C
Co-enzyme Q10
Lipoic acid
Folic acid
Selenium
Flavonoids, carotenes
DHEA
Vitamin B
Carnitin
SAM
Vinpocetine (Cavinton)
Deprenyl (Eldepryl)
    5.2 Drugs with controversial or unproven anti-aging effect, or awaiting other evaluation (side-effects)
        Phyto-medicines, Herbs
HGH
Gerovital
Melatonin
      5.3 Drugs for treatment and prevention of specific diseases of aging. High-tech modern pharmacology.
        Alzheimer's disease and Dementia
Arthritis
Cancer
Depression
Diabetes
Hyperlipidemia
Hypertension
Immune decline
Infections, bacterial
Infections, fungal
Memory loss
Menopause
Muscle weakness
Osteoporosis
Parkinson's disease
Prostate hyperplasia
Sexual disorders
Stroke risk
Weight gaining
    5.4 The place of anti-aging drugs in the whole
      program - a realistic evaluation
 
    6.1 Early diagnosis of disease - key factor to successful treatment.
      Alzheimer's disease and Dementia
Arthritis
Cancer
Depression
Diabetes
Cataracts and Glaucoma
Genetic disorders
Heart attacks
Hyperlipidemia
Hypertension
Immune decline
Infectious diseases
Memory loss
Muscle weakness
Osteoporosis
Parkinson's disease
Prostate hyperplasia
Stroke risk
Weight gaining
    6.2 Biomarkers of aging and specific diseases
    6.3 Stem cell therapy and therapeutic cloning
    6.4 Gene manipulation
    6.5 Prosthetic body-parts, artificial organs
        Blood
Bones, limbs, joints etc.
Brain
Heart & heart devices
Kidney
Liver
Lung
Pancreas
Spleen
    6.6 Obesity reduction by ultrasonic treatment
  Physical activity and aging. Experimental and clinical data.
        Aerobic exercises
Stretching
Weight-lifting - body-building
Professional sport: negative aspects
 
  Conclusion: the whole anti-aging program
    9.1 Modifying your personal aging curve
      Average life span increment. Expert evaluation.
     
Periodic fasting and caloric restriction can add 40 - 50 years to your lifespan
Regular intake of anti-aging drugs can add 20-30 years to your lifespan
Good nutrition (well balanced, healthy food, individually tailord diet) can add 15-25 years to your lifespan
High-tech bio-medicine service can add 15-25 years to your lifespan
Quality of life (prosperity, relaxation, regular vocations) can add 15-25 years to your lifespan
Regular exercise and moderate physical activity can add 10-20 years to your lifespan
These approaches taken together can add 60-80 years to your lifespan, if you start young (say at age 20). But even if you only start later (say at 45-50), you can still gain 30-40 years


Click image
to view
    9.2 The whole anti-aging life style - brief summary 
    References eXTReMe Tracker
        The whole anti-aging program: overview
         
       

       
     
Home Contact Us ANTI-AGING GUIDE 2003