5.1 DRUGS THAT ARE HIGHLY RECOMMENDED (for inclusion in your supplementation anti-aging program) 
Can antioxidant diet supplementation protect against age-related mitochondrial damage?
Differential effects of lipoic acid stereoisomers on glucose metabolism in insulin-resistant skeletal muscle.
Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha Lipoic Acid in Diabetic Neuropathy.
Studies on lipoate effects on blood redox state in human immunodeficiency virus infected patients.
Lipoic (thioctic) acid increases brain energy availability and skeletal muscle performance as shown by in vivo 31P-MRS in a patient with mitochondrial cytopathy.
The neurohumoral systems of patients with ischemic heart disease and under emotional-pain stress: the means for their pharmacological regulation .
Radioprotection of hematopoietic tissues in mice by lipoic acid.
Can antioxidant diet supplementation protect against age-related mitochondrial damage?
Ann N Y Acad Sci. 2002 Apr;959:508-16
Miquel J
Department of Biotechnology, University of Alicante, E-03080 Alicante, Spain

Harman's free radical theory of aging and our electron-microscopic finding of an age-related mitochondrial degeneration in the somatic tissues of the insect Drosophila melanogaster as well as in the fixed postmitotic Leydig and Sertoli cells of the mouse testis led us to propose a mitochondrial theory of aging, according to which metazoan senescence may be linked to oxygen stress-injury to the genome and membranes of the mitochondria of somatic differentiated cells. These concepts attract a great deal of attention, since, according to recent work, the mitochondrial damage caused by reactive oxygen species (ROS) and concomitant decline in ATP synthesis seem to play a key role not only in aging, but also in the fundamental cellular process of apoptosis. Although diet supplementation with antioxidants has not been able to increase consistently the species-characteristic maximum life span, it results in significant extension of the mean life span of laboratory animals. Moreover, diets containing high levels of antioxidants such as vitamins C and E seem able to reduce the risk of suffering age-related immune dysfunctions and arteriosclerosis. Presently, the focus of age-related antioxidant research is on compounds, such as Deprenyl, coenzyme Q10, alpha-lipoic acid, and the glutathione-precursors thioproline and N-acetylcysteine, which may be able to neutralize the ROS at their sites of production in the mitochondria. Diet supplementation with these antioxidants may protect the mitochondria against respiration-linked oxygen stress, with preservation of the genomic and structural integrity of these energy-producing organelles and concomitant increase in functional life span.

Differential effects of lipoic acid stereoisomers on glucose metabolism in insulin-resistant skeletal muscle.
Streeper RS, Henriksen EJ, Jacob S, Hokama JY, Fogt DL, Tritschler HJ.
Department of Physiology, University of Arizona, Tucson 85721-0093, USA.

The racemic mixture of the antioxidant alpha-lipoic acid (ALA) enhances insulin-stimulated glucose metabolism in insulin-resistant humans and animals. We determined the individual effects of the pure R-(+) and S-(-) enantiomers of ALA on glucose metabolism in skeletal muscle of an animal model of insulin resistance, hyperinsulinemia, and dyslipidemia: the obese Zucker (fa/fa) rat. Obese rats were treated intraperitoneally acutely (100 mg/kg body wt for 1 h) or chronically [10 days with 30 mg/kg of R-(+)-ALA or 50 mg/kg of S-(-)-ALA]. Glucose transport [2-deoxyglucose (2-DG) uptake], glycogen synthesis, and glucose oxidation were determined in the epitrochlearis muscles in the absence or presence of insulin (13.3 nM). Acutely, R-(+)-ALA increased insulin-mediated 2-DG-uptake by 64% (P < 0.05), whereas S-(-)-ALA had no significant effect. Although chronic R-(+)-ALA treatment significantly reduced plasma insulin (17%) and free fatty acids (FFA; 35%) relative to vehicle-treated obese animals, S-(-)-ALA treatment further increased insulin (15%) and had no effect on FFA. Insulin-stimulated 2-DG uptake was increased by 65% by chronic R-(+)-ALA treatment, whereas S-(-)-ALA administration resulted in only a 29% improvement. Chronic R-(+)-ALA treatment elicited a 26% increase in insulin-stimulated glycogen synthesis and a 33% enhancement of insulin-stimulated glucose oxidation. No significant increase in these parameters was observed after S-(-)-ALA treatment. Glucose transporter (GLUT-4) protein was unchanged after chronic R-(+)-ALA treatment but was reduced to 81 +/- 6% of obese control with S-(-)-ALA treatment. Therefore, chronic parenteral treatment with the antioxidant ALA enhances insulin-stimulated glucose transport and non-oxidative and oxidative glucose metabolism in insulin-resistant rat skeletal muscle, with the R-(+) enantiomer being much more effective than the S-(-) enantiomer.

Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha Lipoic Acid in Diabetic Neuropathy.
Free Radic Res. 1999 Sep;31(3):171-9.
Reljanovic M, Reichel G, Rett K, Lobisch M, Schuette K, Moller W, Tritschler HJ, Mehnert H.

University of Clinic for Diabetes, Endocrinology and Metabolic Diseases Vuk Vrhovac, Medical faculty, University of Zagreb, Coratia

Short-term trials with the antioxidant thioctic acid (TA) appear to improve neuropathic symptoms in diabetic patients, but the long-term response remains to be established. Therefore, Type 1 and Type 2 diabetic patients with symptomatic polyneuropathy were randomly assigned to three treatment regimens: (1) 2 x 600(mg of TA (TA 1200), (2) 600)mg of TA plus placebo (PLA) (TA 600) or (3) placebo and placebo (PLA). A trometamol salt solution of TA of 1200 or 600 mg or PLA was intravenously administered once daily for five consecutive days before enrolling the patients in the oral treatment phase. The study was prospective, PLA-controlled, randomized, double-blind and conducted for two years. Severity of diabetic neuropathy was assessed by the Neuropathy Disability Score (NDS) and electrophysiological attributes of the sural (sensory nerve conduction velocity (SNCV), sensory nerve action potential (SNAP)) and the tibial (motor nerve conduction velocity (MNCV), motor nerve distal latency (MNDL)) nerve. Statistical analysis was performed after independent reviewers excluded all patients with highly variable data allowing a final analysis of 65 patients (TA 1200: n = 18, TA 600: n = 27; PLA: n = 20). At baseline no significant differences were noted between the groups regarding the demographic variables and peripheral nerve function parameters for these 65 patients. Statistically significant changes after 24 months between TA and PLA were observed (mean +/- SD) for sural SNCV: +3.8 +/- 4.2 m/s in TA 1200, +3.0+/-3.0m/s in TA 600, -0.1+/-4.8m/s in PLA (p < 0.05 for TA 1200 and TA 600 vs. PLA); sural SNAP: +0.6+/-2.5 microV in TA 1200, +0.3+/-1.4 microV in TA 600, -0.7 +/- 1.5 microV in PLA (p = 0.076 for TA 1200 vs. PLA and p < 0.05 for TA 600 vs. PLA), and in tibial MNCV: +/- 1.2 +/- 3.8 m/s in TA 1200, -0.3 +/- 5.2 m/s in TA 600, 1.5 +/- 2.9 m/s in PLA (p < 0.05 for TA 1200 vs. PLA). No significant differences between the groups after 24 months were noted regarding the tibial MNDL and the NDS. We conclude that in a subgroup of patients after exclusion of patients with excessive test variability throughout the trial, TA appeared to have a beneficial effect on several attributes of nerve conduction.


Studies on lipoate effects on blood redox state in human immunodeficiency virus infected patients.
Arzneimittelforschung. 1993 Dec;43(12):1359-62.
Fuchs J, Schofer H, Milbradt R, Freisleben HJ, Buhl R, Siems W, Grune T.
Department of Dermatology, University Hospital, Frankfurt/Main, Fed. Rep. of Germany.

Several investigators have implicated that human immunodeficiency virus (HIV) infected patients have a compromised antioxidant defense system. Blood antioxidants are decreased and peroxidation products of lipids and proteins are increased in the patients. This may have pathophysiological implications, because antioxidants, such as glutathione, and reactive oxidants are involved in the regulation of the human immunodeficiency virus. Consequently it was suggested that HIV infected patients may benefit from antioxidant supplementation therapy. In a open and unblinded pilot study the short term effect of the natural antioxidant lipoate (Thioctacid) on blood antioxidants and peroxidation products was investigated in HIV positive patients (CDC IV). In the majority of the patients, lipoate increased plasma ascorbate (9 of 10 patients) total glutathione (7 of 7 patients), total plasma thiol groups (8 of 9 patients); T helper lymphocytes and T helper/suppressor cell ratio (6 of 10 patients), while the lipid peroxidation products malondialdehyde (8 of 9 patients) and 4-hydroxynonenal (7 of 9 patients) were decreased. The results of this pilot study indicate that lipoate supplementation changes the blood redox state of HIV infected patients. A prospective and longitudinal therapy study is warranted to investigate the long term effects of lipoate therapy on blood redox state, disease progression and incidence of opportunistic infections in HIV infected patients.

Lipoic (thioctic) acid increases brain energy availability and skeletal muscle performance as shown by in vivo 31P-MRS in a patient with mitochondrial cytopathy.
Barbiroli B, Medori R, Tritschler HJ, Klopstock T, Seibel P, Reichmann H, Iotti S, Lodi R, Zaniol P.
Cattedra di Biochimica Clinica, Istituto di Patologia Speciale Medica D. Campanacci, Universita' di Bologna, Italy.

A woman affected by chronic progressive external ophthalmoplegia and muscle mitochondrial DNA deletion was studied by phosphorus magnetic resonance spectroscopy (31P-MRS) prior to and after 1 and 7 months of treatment with oral lipoic acid. Before treatment a decreased phosphocreatine (PCr) content was found in the occipital lobes, accompanied by normal inorganic phosphate (Pi) level and cytosolic pH. Based on these findings, we found a high cytosolic adenosine diphosphate concentration [ADP] and high relative rate of energy metabolism together with a low phosphorylation potential. Muscle MRS showed an abnormal work-energy cost transfer function and a low rate of PCr recovery during the post-exercise period. All of these findings indicated a deficit of mitochondrial function in both brain and muscle. Treatment with 600 mg lipoic acid daily for 1 month resulted in a 55% increase of brain [PCr], 72% increase of phosphorylation potential, and a decrease of calculated [ADP] and rate of energy metabolism. After 7 months of treatment MRS data and mitochondrial function had improved further. Treatment with lipoate also led to a 64% increase in the initial slope of the work-energy cost transfer function in the working calf muscle and worsened the rate of PCr resynthesis during recovery. The patient reported subjective improvement of general conditions and muscle performance after therapy. Our results indicate that treatment with lipoate caused a relevant increase in levels of energy available in brain and skeletal muscle during exercise.

The neurohumoral systems of patients with ischemic heart disease and under emotional-pain stress: the means for their pharmacological regulation
Kardiologiia. 1993;33(10):15-8, 3.
Fomichev VI, Pchelintsev VP.

The sympathetic-adrenal and kallikrein-kinin systems were studied in 225 patients with various coronary heart diseases before and after therapy with lipoic acid (150 mg/day), tocopherol (100 mg/day), anaprilin (40 mg/day), prodectin (750 mg/day) or their combination. Myocardial and adrenal catecholamine levels were measured in experiments on animals exposed to emotional pain stress. Their levels were found to be affected by lipoic acid, tocopherol, obsidan or their combinations in the same doses, taking into account species specificity. Lipoic acid therapy for patients with coronary heart disease decreased epinephrine excretion, enhanced the elimination of vanillylmandelic acid and norepinephrine. Tocopherol lowered daily urinary epinephrine levels and increased the release of vanillylmandelic acid, without changing epinephrine excretion. Emotional pain stress resulted in myocardial epinephrine accumulation and adrenal norepinephrine in the animals. Lipoic acid prevented this accumulation, whereas tocopherol did not possess this effect.

Radioprotection of hematopoietic tissues in mice by lipoic acid.
Radiat Res. 1992 Jun;130(3):360-5.
Ramakrishnan N, Wolfe WW, Catravas GN.
Office of the Chair of Science, Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889-5145.

Lipoic acid is a lipophilic antioxidant that participates in many enzymatic reactions and is used clinically to treat mushroom poisoning and metal toxicity. In this report the protective effect of lipoic acid (oxidized form) against radiation injury to hematopoietic tissues in mice was assessed by the endogenous and exogenous spleen colony assays and survival (LD50/30) assay. Intraperitoneal administration of lipoic acid at a nonlethal concentration of 200 mg/kg body wt, 30 min before irradiation increased the LD50/30 from 8.67 to 10.93 Gy in male CD2F1 mice. Following a 9-Gy irradiation, the yield of endogenous spleen colony-forming units in mice treated with saline and lipoic acid was 0.75 +/- 0.5 and 8.9 +/- 1.6, respectively. Using the exogenous spleen colony assay, lipoic acid treatment increased the D0 from 0.81 +/- 0.01 to 1.09 +/- 0.01 Gy, yielding a dose modification factor of 1.34 +/- 0.01. Dihydrolipoic acid (reduced form) has no radioprotective effect in CD2F1 mice.

on the Adriatic Coast
The Anti-Aging Fasting Program consists of a 7-28 days program (including 3 - 14 fasting days). 7-28-day low-calorie diet program is also available .
More information
    The anti-aging story (summary)
Introduction. Statistical review. Your personal aging curve
  Aging and Anti-aging. Why do we age?
    2.1  Aging forces (forces that cause aging
Internal (free radicals, glycosylation, chelation etc.) 
External (Unhealthy diet, lifestyle, wrong habits, environmental pollution, stress, poverty-change "poverty zones", or take it easy. etc.) 
    2.2 Anti-aging forces
Internal (apoptosis, boosting your immune system, DNA repair, longevity genes) 
External (wellness, changing your environment; achieving comfortable social atmosphere in your life, regular intake of anti-aging drugs, use of replacement organs, high-tech medicine, exercise)
    2.3 Aging versus anti-aging: how to tip the balance in your favour!
    3.1 Caloric restriction and fasting extend lifespan and decrease all-cause mortality (Evidence)
      Human studies
Monkey studies
Mouse and rat studies
Other animal studies
    3.2 Fasting and caloric restriction prevent and cure diseases (Evidence)
Hypertension and Stroke
Skin disorders
Mental disorders
Neurogical disorders
Asthmatic bronchitis, Bronchial asthma
Bones (osteoporosis) and fasting
Arteriosclerosis and Heart Disease
Cancer and caloric restriction
Cancer and fasting - a matter of controversy
Eye diseases
Chronic fatigue syndrome
Sleeping disorders
Rheumatoid arthritis
Gastrointestinal diseases
    3.3 Fasting and caloric restriction produce various
      biological effects. Effects on:
        Energy metabolism
Lipids metabolism
Protein metabolism and protein quality
Neuroendocrine and hormonal system
Immune system
Physiological functions
Reproductive function
Cognitive and behavioral functions
Biomarkers of aging
    3.4 Mechanisms: how does calorie restriction retard aging and boost health?
        Diminishing of aging forces
  Lowering of the rate of gene damage
  Reduction of free-radical production
  Reduction of metabolic rate (i.e. rate of aging)
  Lowering of body temperature
  Lowering of protein glycation
Increase of anti-aging forces
  Enhancement of gene reparation
  Enhancement of free radical neutralisation
  Enhancement of protein turnover (protein regeneration)
  Enhancement of immune response
  Activation of mono-oxygenase systems
  Enhance elimination of damaged cells
  Optimisation of neuroendocrine functions
    3.5 Practical implementation: your anti-aging dieting
        Fasting period.
Re-feeding period.
Safety of fasting and low-calorie dieting. Precautions.
      3.6 What can help you make the transition to the low-calorie life style?
        Social, psychological and religious support - crucial factors for a successful transition.
Drugs to ease the transition to caloric restriction and to overcome food cravings (use of adaptogenic herbs)
Food composition
Finding the right physician
    3.7Fasting centers and fasting programs.
  Food to eat. Dishes and menus.
    What to eat on non-fasting days. Dishes and menus. Healthy nutrition. Relation between foodstuffs and diseases. Functional foods. Glycemic index. Diet plan: practical summary. "Dr. Atkins", "Hollywood" and other fad diets versus medical science

Bread, cereals, pasta, fiber
Glycemic index
Meat and poultry
Sugar and sweet
Fats and oils
Dairy and eggs
Nuts and seeds
Food composition

  Anti-aging drugs and supplements
    5.1 Drugs that are highly recommended
      (for inclusion in your supplementation anti-aging program)
        Vitamin E
Vitamin C
Co-enzyme Q10
Lipoic acid
Folic acid
Flavonoids, carotenes
Vitamin B
Vinpocetine (Cavinton)
Deprenyl (Eldepryl)
    5.2 Drugs with controversial or unproven anti-aging effect, or awaiting other evaluation (side-effects)
        Phyto-medicines, Herbs
      5.3 Drugs for treatment and prevention of specific diseases of aging. High-tech modern pharmacology.
        Alzheimer's disease and Dementia
Immune decline
Infections, bacterial
Infections, fungal
Memory loss
Muscle weakness
Parkinson's disease
Prostate hyperplasia
Sexual disorders
Stroke risk
Weight gaining
    5.4 The place of anti-aging drugs in the whole
      program - a realistic evaluation
    6.1 Early diagnosis of disease - key factor to successful treatment.
      Alzheimer's disease and Dementia
Cataracts and Glaucoma
Genetic disorders
Heart attacks
Immune decline
Infectious diseases
Memory loss
Muscle weakness
Parkinson's disease
Prostate hyperplasia
Stroke risk
Weight gaining
    6.2 Biomarkers of aging and specific diseases
    6.3 Stem cell therapy and therapeutic cloning
    6.4 Gene manipulation
    6.5 Prosthetic body-parts, artificial organs
Bones, limbs, joints etc.
Heart & heart devices
    6.6 Obesity reduction by ultrasonic treatment
  Physical activity and aging. Experimental and clinical data.
        Aerobic exercises
Weight-lifting - body-building
Professional sport: negative aspects
  Conclusion: the whole anti-aging program
    9.1 Modifying your personal aging curve
      Average life span increment. Expert evaluation.
Periodic fasting and caloric restriction can add 40 - 50 years to your lifespan
Regular intake of anti-aging drugs can add 20-30 years to your lifespan
Good nutrition (well balanced, healthy food, individually tailord diet) can add 15-25 years to your lifespan
High-tech bio-medicine service can add 15-25 years to your lifespan
Quality of life (prosperity, relaxation, regular vocations) can add 15-25 years to your lifespan
Regular exercise and moderate physical activity can add 10-20 years to your lifespan
These approaches taken together can add 60-80 years to your lifespan, if you start young (say at age 20). But even if you only start later (say at 45-50), you can still gain 30-40 years

Click image
to view
    9.2 The whole anti-aging life style - brief summary 
    References eXTReMe Tracker
        The whole anti-aging program: overview

Home Contact Us ANTI-AGING GUIDE 2003